ON THE CATALYTIC ACTION OF JAPANESE ACID EARTH. III. THE ACTION ON PRIMARY ALIPHATIC ALCOHOLS.

By Harushige INOUE.

Received July 1, 1926. Published September 28, 1926.

Sabatier⁽¹⁾ and his co-workers have already described the dehydration of some primary alcohols by the catalytic action of alumina and other metallic oxides, and the experiments were reported by Ipatiew,⁽²⁾ especially with regard to the formation of ethers and hydrocarbons of the olefine series from alcohols in presence of alumina, at different temperatures. The present experiment, therefore, was attempted by the writer to find some relation in the catalytic behavior on some aliphatic alcohols, between Japanese acid earth and alumina.

1. Methyl Alcohol. Forty gr. of methyl alcohol purified with lime, b.p. 65-66', was passed on Japanese acid earth heated at 150°, 200°, 250', 300', 350° and 500° respectively at a rate of 14.4 c.c. per hour with a current of air or carbon dioxide gas. Of the reaction products, the qualitative and quantitative determinations of the gaseous substances were made by absorbing with bromine water, and also by the combustion method as usual, and of the liquid one by physical and chemical properties after fractional distillation. The results are shown in the following table.

⁽¹⁾ Sabatier and Mailhe, Bull. Soc. Chim., (4), 1 (1907), 137, 341, 524 & 773.

⁽²⁾ Ipatiew, Ber., 36 (1903), 1993.

Table 1.

m-	Gar	Alcohol & water		Gaseou	Para-form-	
Temp.	Gas	gr.	d_{20}^{20}	C ₂ H ₄ (%)	CO (%)	aldehyde
150°	Air CO ₂	20 30	0.8592 0.8250	0.71 1.29	4.86 9.77	
200°	Air	13	0.9603			
250°	$\operatorname*{Air}_{\mathrm{CO}_{2}}$	13 25	0.9520 0.8512	1.09 0.33	5.83 0.91	
300°	Air	17	0.9535	6.96	7.41	Trace
350°	$ m_{CO_2}^{Air}$	21 27	0.9772 0.9601	28.05 12.55	4.03 0.36	0.03 (m.p. 157°)
500°	Air	23	0.9905	26.73	5.20	0.06

The occurrence of formaldehyde and of its polymer para-aldehyde in the reaction product was confirmed by the characteristic odour and by the physical properties (m.p. 157–160°). The formation of ethylene, as is seen in the table, is favorable with high temperature, and the yield of carbon monoxide is greater in presence of air than in carbon dioxide.

The same experiment which was undertaken on methyl alcohol, has been extended to ethyl alcohol, isobutyl (b.p. 108° ; $d_{15}^{16} = 0.8075$) and isoamyl alcohol (b.p. $130-132^{\circ}$; $d_{15}^{16} = 0.8189$; $[a]^{18} = 2^{\circ}19^{\prime}$), and the latter one, as will be seen from its physical constants, contains some active amyl alcohol as an impurity.

2. Ethyl Alcohol. Ethyl alcohol purified with silver oxide, (1) was examined by the same was as the case of methyl alcohol.

TABLE 2.

				•			
Alcohol gr.	Temp.	Vel. of alcohol c.c./h.	Alcohol & water gr.	Ether %	Ester	Aldehyde %	C ₂ H ₄ %
40	150°	21.26	25.27	5.73	14.73	about 1	1.72
,,	200°	21.26	_	12.31	–	29.27	38.50
,,	200°	51.87	11.40	53.02	-	2-3	15.30
,,	250°	53.40	_	21.36	. —	_	51.61
,,,	350°	17.83	_		_		95.71
	1 1					1	i

The yield of ethylene from the alcohol, depends not only upon the rate of passing on catalyst, but on the reaction temperature. The formation of ether, which is due to the dehydration of alcohol as in the case of ethylene-formation, shows a maximum in yield at 200°. The oxidation of alcohol to aldehyde, the polymerisation of the oxidized substance into para-aldehyde (b.p. 120–124°) and the formation of ethyl acetate due to the dismutation of the aldehyde, were confirmed to occur simultaneously by the isolation of these reaction products in a fairly pure state.

⁽¹⁾ Dulap, J. Am. Chem. Soc., 28 (1906), 395.

3. Isobutyl Alcohol. In the case of isobutyl alcohol, isobutylene and β-butylene are the main reaction products as mentioned by Ipatiew⁽¹⁾ and Senderens⁽²⁾ in the catalytic action of alumina on the alcohol, and dibutyl ether (b.p. 140.9°; d₁₅¹⁵=0.7685) and di-isobutylene (b.p.=110-113°; d₁₅¹⁵=0.7347) were confirmed to occur in the reaction product by determining the physical constants of the corresponding fractions mentioned in the following table.

TABLE 3.

m	Vel. of alcohol	Butylenes	Liquid reaction products.		
Temp.	c.c./h.	% ————————————————————————————————————	ice cooled gr.	water cooled gr.	
150°	15	19.58	0.027 (0.11%)	4.807	
250°	,,	57.25	0.229 (0.97%)	1.934	
350°	,,	64.96		1.196	

Temp.	Fraction	Yield gr.	${ m d}_{20}^{20}$	n_D^{20}	Remark
	to 82°	2.9	0.7472	1,39619	
	103-105°	1.1	0.7840	1.39221	
150°	105-107°	0.7	0.7852	1.39932	
150°	107-140°	0.5	0.7794	1.40108	
	140-145°	0.3	0.7639	1.42310	Mostly di-butyl ether
	145-150°	0.9	0.7674	1.43287	
	above 200°	1.2	0.7829	1.43783	
	60-62°	1 drop			-
	62-85°	_			
250°	85-110°	6 drops			
250	110-113.5°	0.7	0.7344	1.41500	Di-isobutylene
	114-181°	0.6	0.7994	1.45287	
	Residue	0.3			
	to 90°				
350°	90-110°	0.2	0.7724	1.43887	
	Residue	0.5	0.8298	1.44326	

⁽¹⁾ Ipatiew, Ber., 36 (1903), 1993.

⁽²⁾ Senderens, Bull. Soc. Chim., (4), 1 (1907), 692.

200 H. Inoue.

4. Isoamyl Alcohol. With amyl alcohol, as will be seen in Table 4, amylenes (isopropyl ethylene, methyl-ethyl-ethylene and trimethyl-ethylene), diamyl ether and diamylenes were confirmed to occur as usual in the lower fractions of the reaction product, and the yield of these substances tends to increase with the reaction temperature.

Table 4.

Temp.	Fraction	Yield gr.	d ₁₅ ¹⁵	$\mathbf{n}_{\mathrm{D}}^{20}$	Remark	
	40-45°	0.7	0.6438(0°)	1.35836	Amylenes	
	45-50°	0.9	_	1.35978		
	50-57°	1.1	0.7320(0°)			
	59-65°	1.1	0.7450(0°)			
	65-70°	1.4	0.7411(0°)	1.37639		
	70-75°	1.2	0.7444(0°)	1.37397		
	75-115°	0.2	0.7874(0°)		-	
150°	115-125°	0.3	0.8109(0°)			
	125-130°	10.8	0.8012	1.40867	Diamylenes & amyl alcohol	
	130-135°	3.6	0.8027	1.40727		
	135-137°	5.7	0.7988	1.40925		
	170-175°	2.0	0.7783	1.41232	Diamyl ethers	
	175-180°	1.3	0.7757	1.41331		
	180-185°	2.2	0.7875	1.41580		
	to 220°	2.2	0.7872	1.43341		
200°	28-33°	1.0		1.37252		
	33-37°	2.0		1.37518	Amylenes	
	125-135°	1.4	0.7664	1.41820	Diamylenes &	
	150-160°	2.5	0.7743	1.42120	amyl alcohol	
	160-170°	0.5	0.7557	1.42440	Diamyl others	
	170-177°	0.6	0.7693	1.45287	Diamyl ethers	
	above 180°	2.9	0.8101			

Table 4. (Continued)

Temp.	Fraction	Yield gr.	d ₁₅	${ m n_D^{20}}$	Remark	
-	28-33°	2.0	0.6606	1.37667	41	
	33-37°	3.4	0.6659	1.37931	- Amylenes	
	37-90°	10 drops				
0700	90-100°	0.6	0.7658			
250°	120°(±1°)	0.4	0.7828			
	125-150°	0.7	0.7818		Diamylenes & amyl alcohol	
	150-160°	1.2	0.7868	1.45797		
	160-200°	0.8	0.8168	1.48968		
	200-210°	0.6	0.8679	1.51153		
	28-33°	1.9	0.6646	1.37683	Amylenes	
	33-37°	5.6	0.6672	1.37931		
	37-40°	1.2	0.6745	1.38186		
300°	40-110°	1 drop			,	
	110-120°	0.4	0.7618	1.42940		
	120-150°	3 drops			Diamylenes	
	150-160°	1.1	0.8050	1.45507		
	Residue	1.3	0.8893	1.50831		
	28-33°	3.0	0.6590	1.37509		
	33-37°	4.0	0,6700	1.37742	Amylenes	
	37-40°	1.3	0.6721	1.38243		
350°	40-110°	5 drops			-	
000	110-120°	0.6	0.7848	1.44195	-	
-	120-130°	4 drops				
	130-140°	1.1	0.8238	1.46949	Diamylenes	
	140-142°	0.9	0.9010	1.49871		
	20-40°	1.0	0.5885		Amylenes	
500°	40-140°	13 drops				
	140-144°	1.2	0.8720	1.49871	Diamylenes	

By the contact action of Japanese acid earth, primary alcohols of the aliphatic series yield unsaturated hydrocarbons and ethers as in the case of the catalytic action of alumina, and also aldehydes and esters. Both the debydration of alcohols and the polymerisation of unsaturated hydrocarbons and aldehydes, as we noticed in the present research, resulted in excellent yields at high temperature. The oxidation of alcohols and the dismutation of the oxidized substance, which occur with this catalyst but not with alumina, are favorable at low temperatures.

Tokyo Imperial Industrial Laboratory, Hatagaya, Tokyo.